Soluble ST2 is regulated by p75 neurotrophin receptor and predicts mortality in diabetic patients with critical limb ischemia.
نویسندگان
چکیده
OBJECTIVE The p75 neurotrophin receptor (p75(NTR)) contributes to diabetes mellitus-induced defective postischemic neovascularization. The interleukin-33 receptor ST2 is expressed as transmembrane (ST2L) and soluble (sST2) isoforms. Here, we studied the following: (1) the impact of p75(NTR) in the healing of ischemic and diabetic calf wounds; (2) the link between p75(NTR) and ST2; and (3) circulating sST2 levels in critical limb ischemia (CLI) patients. METHODS AND RESULTS Diabetes mellitus was induced in p75(NTR) knockout (p75KO) mice and wild-type (WT) littermates by streptozotocin. Diabetic and nondiabetic p75KO and WT mice received left limb ischemia induction and a full-thickness wound on the ipsilateral calf. Diabetes mellitus impaired wound closure and angiogenesis and increased ST2 expression in WT, but not in p75KO wounds. In cultured endothelial cells, p75(NTR) promoted ST2 (both isoforms) expression through p38(MAPK)/activating transcription factor 2 pathway activation. Next, sST2 was measured in the serum of patients with CLI undergoing either revascularization or limb amputation and in the 2 nondiabetic groups (with CLI or nonischemic individuals). Serum sST2 increased in diabetic patients with CLI and was directly associated with higher mortality at 1 year from revascularization. CONCLUSIONS p75(NTR) inhibits the healing of ischemic lower limb wounds in diabetes mellitus and promotes ST2 expression. Circulating sST2 predicts mortality in diabetic CLI patients.
منابع مشابه
Blockade of p75 Neurotrophin Receptor Reverses Irritability and Anxiety-Related Behaviors in a Rat Model of Status Epilepticus
Background: Many recent epidemiological studies have shown that epileptic patients are more likely suffer from depression, anxiety, and irritability. However, the cellular mechanisms of epilepsy-induced psychotic behaviors are not fully elucidated. Neurotrophin receptors have been suggested to be involved in epilepsy and also in psychiatric disorders. Up-regulation of p75NTR expression and acti...
متن کاملNeurotrophin p75 receptor (p75NTR) promotes endothelial cell apoptosis and inhibits angiogenesis: implications for diabetes-induced impaired neovascularization in ischemic limb muscles.
Diabetes impairs endothelial function and reparative neovascularization. The p75 receptor of neurotrophins (p75(NTR)), which is scarcely present in healthy endothelial cells (ECs), becomes strongly expressed by capillary ECs after induction of peripheral ischemia in type-1 diabetic mice. Here, we show that gene transfer-induced p75(NTR) expression impairs the survival, proliferation, migration,...
متن کاملDeprenyl changes the expression of Trk-B and P75 NTR receptors in rat after sciatic nerve axotomy
During development many of neurons die by the phenomenon named programmed cell death or apoptosis and this reaction is regulated by neurotrophin (BDNF, NGF, NT3 and NT4/5). These neurotrophins bind to two different classes of transmembrane receptor proteins, the Trks and P75 NTR. Axotomy can induce apoptosis after birth and deprenyl is a an inhibitor of monoamineoxidase type-B and seems to act ...
متن کاملDeprenyl changes the expression of Trk-B and P75 NTR receptors in rat after sciatic nerve axotomy
During development many of neurons die by the phenomenon named programmed cell death or apoptosis and this reaction is regulated by neurotrophin (BDNF, NGF, NT3 and NT4/5). These neurotrophins bind to two different classes of transmembrane receptor proteins, the Trks and P75 NTR. Axotomy can induce apoptosis after birth and deprenyl is a an inhibitor of monoamineoxidase type-B and seems to act ...
متن کاملNon-cell-autonomous regulation of GABAergic neuron development by neurotrophins and the p75 receptor.
Basal forebrain GABAergic and cholinergic circuits regulate the activity of cholinergic projections to the cortex and hippocampus. Because these projections influence cortical development and function, the development of basal forebrain excitatory and inhibitory neurons is critical for overall brain development. We show that the neurotransmitter phenotype of these neurons is developmentally reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 32 12 شماره
صفحات -
تاریخ انتشار 2012